Harmony: Co-Optimizing Parallelism and Locality to Bound Performance
Jennifer Brana, Nathan Beckmann

jbrana@cs.cmu.edu

beckmann@cs.cmu.edu

Carnegie Mellon University

ABSTRACT

To maximize performance, systems must balance paral-
lelism and locality. Architectures often neglects this tradeoff,
optimizing for only parallelism or locality. Prior work has ne-
glected this tradeoff, instead optimizing for only parallelism
or locality. We explore an abstract processor, CHAOS, as
a limit study to evaluate the bounds of performance when
jointly optimizing for parallelism and locality. We find that
co-optimizing parallelism, data locality, and instruction lo-
cality is essential: our optimized scheduling algorithm, HAR-
MONY, outperforms all other methods and achieves near ideal
scaling.

1 Introduction and Background

There is a fundamental tradeoff in computing between par-
allelism and locality. To improve performance, processors
distribute instructions across parallel processors. As paral-
lelism increases, locality is lost as instructions are distributed
far apart, causing data movement from communication and
instruction fetch (ifetch) to dominate execution. Architec-
tures limit data movement by exploiting locality, i.e., by
co-locating instances of the same instruction or instructions
that communicate with each other. However, co-location
can increase processor contention, serializing independent
operations. To maximize performance, systems must find the
optimal balance between parallelism and locality.

Limitations of existing architectures. Unfortunately, existing
architectures fail to consider parallelism and locality together.
Traditional out-of-order (O0O) superscalars improve paral-
lelism by eliminating false dependencies to expose dynamic
instruction-level parallelism (ILP) within and across loops.
However, this approach compromises locality, as rewriting
registers destroys dataflow locality (i.e. the predictability
of data dependencies), forcing cores to distribute instruc-
tions irrespective of dependencies (increasing communica-
tion latency) and switch instructions every cycle (increasing
ifetches) [8, 9]. In contrast, spatial architectures optimize
for locality by unrolling program dataflow graphs (DFG)
spatially in hardware such that dependent instructions are
close together (to reduce communication latency) [2,6,9].
This requires each static instruction is bound to a processing
element (PE) such that all dynamic instances are executed
on the same PE (eliminating instruction fetches). Binding
instructions statically can serialize dynamic instances of the
instruction, limiting parallelism [1].

Goal: Understanding the limits of parallelism & locality.
This work seeks an instruction placement method for parallel
processors that finds the optimal balance between parallelism
and locality. Fig. 1 illustrates how instruction execution is im-
pacted by varying levels of parallelism and locality. A naive
way to expand parallelism is to assign dynamic instructions

Communication frequenc

250 500 750 1000 1250 1500

(a) Random (b) Snake [5]
8301 Communication
g Serialization
< S Instruction Fetch
CD
| | £ 20
LA\ =
c
bl g
| | g 107
| AP X 11 g
| | o
| | S =
< 0
e
| | Sl 50@ o(*
S S &
Q¢ L

(c) HARMONY (d) Execution time.

Figure 1: Frequency of communication between PEs and breakdown of
average instruction execution time for SpMYV. See Fig. 2 for performance
results. Lines represent inter-PE communication, and circles depict
intra-PE communication. Random has significant communication due
to frequent messaging between a large number of PEs with no clear
locality. Snake, adapted from [5], has sparse and localized communica-
tion, however, instructions execute on a limited number of PEs, causing
significant serialization delay. Harmony co-optimizes for parallelism
and locality to find the balance that maximizes performance.

to random PEs. While Random achieves high parallelism,
it ignores locality, causing data communication and ifetch
to dominate execution time. By contrast, Snake (adapted
from [5]) optimizes for locality by binding each static instruc-
tion to a single PE and placing dependent instructions close
together, following a “snake” pattern. However, optimizing
for locality by decreasing parallelism leads to instruction se-
rialization. Our method, HARMONY, jointly considers paral-
lelism and locality to increase parallelism without degrading
performance.

Problem. Although prior work has recognized a tradeoff
between parallelism and locality, prior work has explored
the tradeoff only within specific architectures [5, 7], where
inessential design choices cloud the fundamental challenges.
To explore the tradeoff, architects need a simple model that
captures parallelism, data locality, and instruction locality,
free of other constraints.

CHAOS: Our processor model where anything goes. To
facilitate exploration of the tradeoff space, we develop a
new spatial processor model, CHAOS, that enables exploiting

mmmm SinglePE WaveScalarSnake Random HarmonyNolFetch Harmony
a
Q 400
{ 1000
g4 s : °
2] 300 750
g 4
a2 2 2 200 500
> 24
S 100 250
[}
a 1|
»0 dfs 0 bfs 0 smv 0 spmv 0 dmv 0 dmm

Figure 2: Speedup over a single PE across all apps and placement methods. Fabric sizes are selected based on the maximum IPC achievable in the
app. HARMONY vastly outperforms all other placement methods. HARMONY considers parallelism, instruction locality, and dataflow locality during
scheduling, allowing it to achieve high performance for apps with variable levels of parallelism and locality.

parallelism, dataflow locality, and instruction locality in a
single framework. CHAOS incorporates the dynamism of
000 scheduling to throttle parallelism and a spatial execution
model to expose control of dataflow and instruction locality.
CHAOS uses placement methods to assign instructions to a
PE, and executes them once their input operands have arrived
at the PE, their instruction has been fetched, and the PE is
idle. CHAOS models the breakdown of instruction execution
time by measuring the factors that delay instruction firing.

HARMONY: Our method to co-optimize parallelism & local-
ity. To evaluate the potential of co-optimizing for parallelism
and locality, we develop a new placement method, HAR-
MONY. HARMONY places instructions by performing a local
search over space and time, scheduling the instruction at
the earliest available PE, according to locality and already-
scheduled instructions. HARMONY maximizes performance
by exploiting parallelism without sacrificing locality.

2 Preliminary Study and Results
2.1 cCHaos Processor Model

CHAOS models a spatial fabric of simple PEs (each contain-
ing some instruction cache) connected by a dynamic on-chip
network. We observe that performance of instruction place-
ment is influenced by three factors: distance from operand
producers, whether the instruction is cached in the PE or
not, and serialization due to contention for PE execution re-
sources. Instruction execution is broken into three factors:
communication delay, ifetch delay, and serialization delay.

To explain CHAOS, we describe an instruction execution.
A dynamic instruction instance is scheduled to a PE when
the first producer of the instruction generates data. Producers
explicitly send data to the PE the instruction is scheduled
on. Communication delay is measured as the difference
between when the last input was generated and when the
instruction receives all its inputs. When all inputs have been
received, the icache is checked and the instruction is fetched
from memory if necessary. The time to fetch the instruction
is recorded as ifetch delay. Once an instruction is ready
to execute (has all input operands and the instruction), it
enqueues to the PE’s FIFO readylist. The difference between
when the instruction enters the readylist and when it executes
constitutes serialization delay. If the instruction generates
data operands for other instructions, it sends the data after
executing and schedules consumers if necessary.

2.2 HarMmony Scheduling Algorithm

HARMONY uses knowledge of instruction delays to optimize
performance by throttling parallelism and locality. When
scheduling an instruction, HARMONY iteratively builds a list
of candidate PEs to schedule to. During the first pass, the PEs
reachable fastest (by best-time) by an instruction’s operand
producers are entered into the list at the earliest time the PE
can execute the instruction. PEs compute when they can
execute an instruction based on the potential ifetch delay and
if there are other instructions in its readylist that will cause
serialization delay. If no PEs are available at best-time, PEs
one cycle from current candidates are added to the list and the
next cycle is checked. This is repeated until a PE is found.

2.3 Experimental Methodology

We perform trace-driven simulation on six common applica-
tions: DFS, BFS, SMV, SpMV, DMV, and DMM. We com-
pare HARMONY against: (i) SinglePE, (ii) WaveScalarSnake,
(iii) Random, and (iv) HarmonyNolIFetch. Placement meth-
ods fall into two categories: static placement where static
instructions are bound to a PE such that every dynamic in-
stance is executed on the same PE and dynamic placement
where dynamic instances are scheduled independently. Sin-
glePE represents a baseline single-core system which we
compare against throughout the paper. WaveScalarSnake,
based on [5], is a static placement method that fills PEs se-
quentially and places dependent instructions close together.
Random is a dynamic placement method that distributed in-
structions randomly. Finally, HarmonyNolFetch is a dynamic
placement method similar to HARMONY except is disregards
instruction locality during scheduling.

2.4 Evaluation

Fig. 2 shows the speedup for every app on each system. Start-
ing from the baseline of a single PE, the next three bars
demonstrate the importance of each element Harmony opti-
mizes. WaveScalarSnake exploits locality, but ignores paral-
lelism, limiting performance and scalability. Random adds
in parallelism, but ignores locality, and performance suffers.
HarmonyNolFetch exploits parallelism and dataflow local-
ity, but ignores instruction locality, and performance is still
suboptimal. Only HARMONY considers all aspects of the
tradeoff, and achieves by far the best performance as a result,
averaging a speedup of 1.98x over the next best method.

3 Future Work

Expanded Limit Study. In the future, we plan to evaluate
larger, real world applications such as SPEC CPU2017 and

Mediabench [4]. Additionally, we plan to compare against
prior schedulers used in OoO cores and spatial architectures.

Instruction Bottleneck Analysis. To quantify the tradeoff
between parallelism and locality, we plan to model how dif-
ferent instruction delays contribute to performance by devel-
oping an analytical model such as [3,5].

Application to Future Hardware Design. We plan to use the
insights from our limit study to design an architecture that can
optimize parallelism, data locality, and instruction locality.

REFERENCES

[1] N. Agarwal, M. Fream, S. Ghosh, B. C. Schwedock, and N. Beckmann,
“The TYR Dataflow Architecture: Improving Locality by Taming
Parallelism ,” 2024.

[2] D. Burger, S. Keckler, K. McKinley, M. Dahlin, L. John, C. Lin,
C. Moore, J. Burrill, R. McDonald, and W. Yoder, “Scaling to the end
of silicon with edge architectures,” Computer, 2004.

[3] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A

[4]

(51

(6]

(71

(8]

(91

performance counter architecture for computing accurate cpi
components,” 2006.

C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool
for evaluating and synthesizing multimedia and communications
systems,” 1997.

M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin,
M. Oskin, and S. J. Eggers, “Modeling instruction placement on a
spatial architecture,” 2006.

R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler, “A design
space evaluation of grid processor architectures,” 2001.

R. Nagarajan, S. Kushwaha, D. Burger, K. McKinley, C. Lin, and
S. Keckler, “Static placement, dynamic issue (spdi) scheduling for edge
architectures,” 2004.

S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” 1997.

S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,”
in Proc. of the 36th annual IEEE/ACM intl. symp. on Microarchitecture
(Proc. MICRO-36), 2003.

