

Harmony: Co-Optimizing Parallelism and Locality to Bound Performance Jennifer Brana, Nathan Beckmann

Carnegie Mellon University

Data Movement-Aware Bounding

Chaos Processor Model

Our goal: understanding the fundamental limits of performance in real systems

Our approach: instruction placement in parallel processors

Chaos is a processor model that lets us isolate and study the tradeoff between parallelism and locality in a single framework

...incorporates **dynamism** of OoO scheduling to throttle parallelism

Instruction placement alg

Why instruction placement?

...a spatial execution model exposes control of dataflow and instruction locality to online instruction placement algorithms

...captures the effect of exploiting locality to reduce data movement overheads

Harmony Placement Algorithm

Harmony places instructions by performing a local search over space and time, scheduling the instruction at the earliest available PE, according to locality and already-scheduled instructions

Harmony example placing operation 'Z':

Find PEs reachable earliest by 1) both input operands (x & y) Highlighted in blue

...captures the impact of communication latency & instruction fetch penalty

...enables us to exploit the tradeoff between parallelism and locality to maximize performance

Limitations of Prior Work

OoO superscalar models: Spatial dataflow models: Optimize parallelism via dynamic Optimize locality by unrolling program in hardware & binding scheduling to expose parallelism within & across loops static instructions to PEs

Check when PEs can execute Z 2)

> Other isns are scheduled on the ideal PEs

- 3) If no PEs can execute Z at the earliest time, PEs one cycle from the list are added and the next cycle is checked
 - Highlighted in red
 - Z is scheduled on PE 3

Evaluation

We evaluate **Harmony** using a trace-driven simulation of **Chaos** We evaluate 6 common workloads: DFS, BFS, SMV, SpMV, DMV, and DMM

Harmony averages a speedup of **1.98**× over the next best method ...co-optimizes parallelism, dataflow locality, and instruction locality

...finds the best balance between parallelism and locality

