
Kobold: Simplified Cache Coherence for Cache-Attached Accelerators

Jennifer Brana?† Brian C. Schwedock† Yatin A. Manerkar‡ Nathan Beckmann†

? University of Portland † Carnegie Mellon University ‡ University of Michigan
brana23@up.edu bschwedo@andrew.cmu.edu manerkar@umich.edu beckmann@cs.cmu.edu

Abstract—The ever-increasing cost of data movement in com-
puter systems is driving a new era of data-centric computing. One
of the most common data-centric paradigms is near-data com-
puting (NDC), where accelerator resources are placed inside the
memory hierarchy to avoid the costly transfer of data to the core.
NDC systems show immense potential to improve performance
and energy efficiency. Unfortunately, adding accelerators into
the memory hierarchy incurs significant complexity for system
integration because accelerators often require cache-coherent
access to memory. The complex coherence protocols required
to handle both cores and cache-attached accelerators result in
significantly higher verification costs as well as an increase
in directory state and on-chip network traffic. Furthermore,
these mechanisms can cause cache pollution and worsen baseline
processor performance.

To simplify system integration for cache-attached accelerators,
we present Kobold, a new coherence protocol and implementation.
Kobold restricts the added complexity of the accelerator to
its local tile and leaves the rest of the system unmodified.
Kobold introduces a new directory structure within the L2
cache to track the accelerator’s private cache and maintain local
coherence between the core and accelerator, leaving the LLC
protocol unchanged. Optionally, Kobold implements a minor
modification to the LLC protocol to provide significant perfor-
mance improvements. We verified Kobold’s stable-state coherence
protocols using the Murphi model checker and estimated area
overhead using Cacti 7. Kobold adds only 0.09% area over the
baseline caches. Kobold simplifies integration of cache-attached
accelerators with minimal area and performance overhead.

I. INTRODUCTION

Computer systems are increasingly bottlenecked by the
rising cost of data movement [14, 19, 20, 25]. To combat
this trend, near-data computing (NDC) designs propose to
add accelerator resources within memory hierarchies to, e.g.,
move compute closer to data instead of transfering data to
compute. Cache-attached accelerators are a promising direction
for NDC that enables fine-grain collaboration between cores
and accelerators by offloading work to within the existing CPU
cache hierarchy [12, 13, 28, 33, 52, 53].

Fig. 1 shows täkō [46], a representative recent system with
cache-attached accelerators. täkō augments a baseline, cache-
coherent multicore with an engine (i.e., accelerator1) on each
tile, granting the engine efficient access to data in the tile’s
L2 and LLC banks. Each engine also contains its own private,
cache-coherent data cache (eL1D).
Challenges: Cache-attached accelerators must maintain coher-
ence with the core’s caches to usefully access shared memory.
However, introducing accelerators into the coherence protocol

1We use the terms “accelerator” and “engine” interchangeably.

C
al

lb
ac

k 
B

uf
fe

r

Core

L3 Cache Bank

Data Array

Ta
g 

A
rr

ay

L2 Engine

L1D L1I

Dataflow Fabric

rTLBTLB

Hardware 
Scheduler

Tile

eL1D

Fig. 1: täkō [46] adds a reconfigurable engine to each tile of a
CMP. Engines accelerate tasks for data that resides in the L2 or
L3 bank on that tile. Each engine has a coherent eL1D cache.

increases verification costs, directory state, and network traf-
fic [34]. Additionally, cache-attached accelerators can disrupt
baseline processor performance by, e.g., polluting processor
caches.

Insights: The complexity and extra state added to the shared
last-level cache (LLC) protocols caused by integrating cache-
attached accelerators can be eliminated if the engine’s eL1D
and its local L2 bank look like a single, unified cache to the
LLC. This is achievable by adding extra state within each tile
of the chip-multiprocessor (CMP) to track coherence between
the core and engine. Keeping coherence between the core and
engine local to the tile reduces the necessary directory state
and on-chip network traffic, while also ensuring that the LLC
coherence protocol remains unchanged.

However, just making the eL1D an inclusive child cache
of the L2, as in traditional hiearchical coherence designs, can
result in the engine polluting the L2 with data the core does
not need. Consequently, we propose a design where the L2 is
not inclusive of the eL1D, with simple policies to ensure that
data accessed by the eL1D does not evict other useful data
in the L2. Implementing coherence without inclusion requires
tracking a small amount of additional state in the L2.

Approach: Our goal is to restrict the complexity of cache-
attached accelerators to within each tile of a CMP, so that
the rest of the system and coherence protocol are unmodified.
Kobold adds a directory-like structure to each tile, called the mis-
direction filter (MDF) that tracks the state of the accelerator’s
eL1D. The MDF augments the L2 (see Fig. 2) and allows the
processor and accelerator to safely share data and transfer
ownership within the tile, without any modification to the
baseline directory coherence protocol at the LLC. The L2 and
eL1D maintain coherence between themselves and coordinate
responses to LLC requests, leveraging the MDF to eliminate
unnecessary coherence messages.



core

L1D

L2

engine

eL1D

L3

MDF

Fig. 2: Proposed cache hierarchy design with the mis-direction
filter (MDF) augmenting the L2 cache.

In brief, Kobold is a new type of hierarchical coherence. The
main difference from prior hierarchical coherence protocols
is that Kobold requires negligible additional state and is non-
inclusive to prevent the engine from polluting its local L2 bank.
Moreover, by leveraging fast, local communication within a
tile, Kobold avoids unnecessary coherence traffic to the LLC
and minimizes the latency of both hits and misses in the eL1D
and L2. However, to maintain coherence between the core and
engine, the L2 must track the contents of the eL1D — this is
the role of the MDF. The resulting design is a new twist on
hierarchical coherence.

Summary of results: We evaluate Kobold in the context
of the täkō [46] architecture by modifying a baseline MESI
coherence protocol. The resulting design eliminates abundant
communication to the LLC compared to a näive directory-
based protocol. We implement Kobold’s coherence protocol
in Murphi, without changing the baseline LLC, to verify
correctness. And we estimate Kobold’s area overhead (from the
MDF) at just 0.00076mm2, or 0.09% of the baseline caches.

II. BACKGROUND AND MOTIVATION

A. Near-Data Computing

To minimize data movement, many architectures propose
moving processing logic closer to data, rather than moving data
to compute. Some designs propose “processing in-memory”
architectures that place compute logic in memory [11, 18, 22,
23, 24, 27, 35, 37, 39, 47, 49]. Other designs propose “near-data
accelerators” which place co-processors off-chip close to main
memory [3, 5, 7, 8, 16, 17, 21, 42, 55, 56]. Co-processors that
are integrated near main memory provide benefits for streaming
applications, but they are inappropriate for applications with
data reuse or fine-grained communication [2, 21, 29, 51, 55].

For applications with significant locality or frequent data
sharing between core and accelerator, others propose integrating
accelerators within the cache hierarchy, allowing CPUs to
offload work to caches [1, 2, 29, 40, 46, 50, 54]. Cache-attached
accelerators benefit from sharing a unified address space with
the host cores, eliminating the need to control low-level data
movement in software [48]. However, accessing the shared
memory of the host core requires these accelerators to maintain
coherence with the rest of the system.

B. Coherence and Consistency

1) Directory-Based Coherence Protocols: Directory-based
protocols use a directory structure to track which caches hold
a block and in which state [34]. For any coherence request,
the directory determines the actions to be taken based on the
current location(s) and state of the block. Directory protocols
are popular for modern CMPs where the shared last-level cache
(LLC) tracks coherence across the private caches of each core.

Naïvely extending directory-based coherence to support
cache-attached accelerators does not work well. Fig. 3 shows an
architecture where the engines’ eL1Ds are treated as additional
sharers under the LLC.

core

L1D

L2

2) GETS

1) Load

7) Data

8) Data

L3

engine

eL1D

3) GETS 4) INVX 
5) Data

ACK6) Data

Step L1D eL1D L2 L3

Init) I M I M

1) I M I M

2) I M I M

3) I M I M

4) I M I M

5) I S I S

6) I S S S

7) S S S S

8) S S S S

Fig. 3: Naïve architecture where the engines’ eL1Ds are treated
as additional sharers under the LLC. Example transaction for
core read request when the eL1D holds the data in the modified
(M) state. ’I’ represents Invalid, and ’S’ represents Shared.

This example shows a common access pattern where a core
reads data produces by an engine. In Fig. 3, the modified cache
line is stored in state M (modified) in the engine’s eL1D. When
the core issues a load to the line, the request must propagate
down to the LLC and back up to the eL1D in order to revoke
modified permission from the eL1D, and then send the data
back through the LLC to the requesting core. This is quite
wasteful because the core and engine reside on the same tile,
and the LLC directory can be across the chip. It also increases
directory overheads in the LLC by doubling the number of
sharers. To alleviate these issues, other types of coherence
protocols have been proposed.

2) Hierarchical Coherence Protocols: Directory-based pro-
tocols face scaling challenges due to the storage required to
track all caches and additional on-chip network traffic [32].
To improve scalability, multicore chips can be organized into
hierarchies of shared buses and caches with multiple levels
of on-chip directories. Intermediate levels of the hierarchy
serve as directories for the lower levels, tracking their state
and filtering traffic to the lower levels. The use of intermediate
directories reduces the storage overhead by only requiring
tracking of clusters, rather than tracking of each individual
node [31]. Additionally, locality can enable the majority of
transactions to be performed within a cluster, reducing network
congestion by limiting the number of requests to the last-level
cache.

The DASH [26] architecture enables scalability in CMPs
by mitigating the bottlenecks of directory-based systems. They
propose distributing the main memory and directory among

2



clusters throughout the system. To maintain coherence, DASH
utilizes two coherence protocols: a snooping-based intra-cluster
protocol and a directory-based inter-cluster protocol. All private
data references can be localized to the cluster, reducing the
need to access the on-chip network or directory. While more
scalable than a flat protocol, the mixed coherence policy adds
significant verification complexity [10].

Ros et al. [44] introduce the Hierarchical Private/Shared
Classification method that enables data blocks to be shared
entirely within a cluster but appear as private from outside the
cluster. To eliminate complex recursive functions in the hier-
archy, they implement simple coherence mechanisms such as
self-invalidation and write-through that operate entirely within
the sharing cluster. To implement the protocol, classification
of clusters is performed dynamically using the page tables to
detect and track the sharing level.

Kobold is also a hierarchical cache-coherence protocol that,
like DASH, uses a combination of local snooping and directories
to improve scalability and limit coherence traffic. Fig. 4 revisits
the earlier example from Fig. 3, but using Kobold’s hierarchical
design.

core

L1D

L2

2) GETS

1) Load

5) Data

6) Data

L3

engine

eL1D
MDF

3) INVX

4) Data ACK

Step L1D eL1D MDF L2 L3

Init) I M M I M

1) I M M I M

2) I M M I M

3) I S M I M

4) I S M S M

5) S S M S M

6) S S M S M

Fig. 4: Kobold architecture where the L2 tracks eL1D state with
an MDF. Example transaction for core read request when the
eL1D holds the data in the modified (M) state.

To demonstrate the benefits of hierarchical coherence, Fig. 4
revisits the earlier example from Fig. 3, but using Kobold’s
design. As mentioned earlier, Kobold augments the L2 cache
with a mis-direction filter (MDF) that tracks the state of the
eL1D. Since the MDF knows that the local eL1D holds the
block in state M, the core’s load request can be handled without
involving the LLC. The eL1D downgrades and responds to the
L2 locally, leaving both in state S (shared), while the MDF
continues tracking the tile as M, delaying write-back of dirty
data, since the line is still dirty within the tile.

3) Cache Inclusion: One of the key design choices when
building a multi-level cache hierarchy is whether to enforce
inclusion. Inclusive caches benefit from snoop filtering (e.g.,
in an L2/LLC cache system, coherence requests do not require
an L2 lookup if a miss occurs in LLC). However, since the
LLC is inclusive of the L2, data is duplicated in both caches,
reducing effective cache size, and data brought in by the eL1D
can remain in the L2 long after it is evicted from the engine.
For example, täkō [46] observed a > 4× slowdown from L2
cache pollution on some benchmarks. Cache bypassing has

been demonstrated to also significantly improve the miss rate
for workloads with transient data [43].

NCID [57] proposes a non-inclusive cache, inclusive-
directory design. To increase the space efficiency of the cache,
data in the LLC is non-inclusive of the L2. However, the LLC
retains tag inclusion in the directory to support complete snoop
filtering. An independent tag/directory structure is maintained
in the LLC cache to track additional addresses with no data
and is exclusive of the main directory.

Kobold takes a similar approach as NCID by implementing
the L2 as non-inclusive of the eL1D and integrating an
additional directory structure (MDF) within the L2 to enable
snoop filtering for requests coming from the LLC. However,
Kobold differs in several areas. First, the MDF is not exclusive
of the L2; tags can exist in both the MDF and the L2 at
the same time. Furthermore, the MDF is used to determine
coherence messages for requests originating from both the LLC
and the core. In cases where both the L2 and eL1D share data
that is modified but has not yet been written back (see Fig. 4),
the MDF reflects the overall state of the tile rather than the
eL1D.

4) Coherence and Consistency for Heterogeneous Systems:
The trend toward heterogeneous architectures has led to tighter
integration of accelerators and devices with shared memory.
Inter-device communication in heterogeneous architectures is a
major bottleneck that has motivated the adoption of a unified
coherent address space. Allowing the host and devices to share
a single, coherent address space greatly improves inter-device
communication and simplifies programming [45]. Additionally,
making accelerators coherent with the rest of the system allows
accelerators to efficiently share data with the system. However,
ensuring that shared memory remains coherent is a major
challenge due to the diverse memory demands and coherence
properties of accelerators.

Direct memory access (DMA) engines have become a
popular option to maintain coherence between accelerators
and host cache hierarchies [30]. DMA engines transfer data
directly between the LLC and the accelerator caches. While
efficient for accelerators with little data sharing, the DMA-based
approach is undesirable for accelerators that share memory with
the host or other accelerators due to excessive data transfers.

Maintaining coherence for near-data accelerators (NDA) that
reside off-chip close to main memory is a major challenge
due to communication costs with the CPU and high levels of
required off-chip data movement. CoNDA [9] is a recent co-
herence mechanism that allows NDAs to optimistically execute
kernels to gather information on memory accesses and uses
this information to avoid performing unnecessary coherence
requests. Spandex [4] is a coherence interface that efficiently
supports integrating a variety of devices with divergent memory
access patterns and diverse coherence properties into a single
address space. Essentially, Spandex allows devices with much
different coherence protocols to efficiently share a single unified
address space. These designs target discrete co-processors with
expensive communication between cores and accelerators.

Overall, we find that prior protocols for heterogeneous

3



systems do not work well for cache-attached accelerators
because they assume minimal communication between the
core and accelerator. This assumption motivates designs which
perform well for coarse-grain communication, but not the fine-
grain communication commonly exhibited by cache-attached
accelerators.

5) Formal Verification: Modern CMPs employ coherence
protocols that ensure high performance at the cost of significant
verification complexity [34]. To eliminate bugs from these
protocols, an exhaustive search of the protocols’ state space
is required. The exhaustive nature of coherence protocol
verification dictates that the overhead costs, memory required,
and verification time grow very fast with respect to the number
of processors and the complexity of the protocol [41].

Murphi [15] is a commonly used verification tool that utilizes
enumerative state checking. The Murphi model checker verifies
the specified system by enumerating all possible states and
checking them against a set of invariants while ensuring the
protocol never causes system deadlock. We implement Kobold’s
coherence protocol in Murphi to verify correctness.

III. KOBOLD DESIGN AND IMPLEMENTATION

We consider a chip-multiprocessor (CMP) where each tile
contains a core, private L1D/L1I, private L2, shared LLC
bank, and cache-attached accelerator with its own private eL1D
(see Fig. 1). To avoid adding state and coherence complexity to
the LLC, all modifications to support the accelerator’s eL1D are
confined within its tile.2 Similar to prior hierarchical coherence
protocols, the eL1D is logically a child of the L2, alongside
the core’s L1D/L1I, and the L2 is responsible for maintaining
coherence between the core and accelerator. But unlike prior
protocols, the L2 is not inclusive of the eL1D, and the L2 and
eL1D operate as peers via snooping to handle many coherence
transactions.

A. Kobold Cache Hierarchy

In Kobold, additional coherence complexity and state is
restricted to the L2 and eL1D. The L2’s responsibilities are to
(i) maintain coherence between its local L1D and eL1D banks,
and (ii) prevent the accelerator from polluting the L2 bank.
Kobold’s design enforces these requirements with minimal
overheads by augmenting the L2 with a small directory structure
called the mis-direction filter (MDF).

Fig. 2 shows Kobold’s cache hierarchy. The eL1D and the
core’s L1D (and L1I, not shown) are logically children of the
L2 cache, as far as coherence is concerned. However, in many
ways the eL1D operates as a peer cache of the L2 to, e.g., avoid
polluting the L2 with data accessed by the engine. Interaction
between the L2 and eL1D is mediated by the MDF.
Mis-direction filter: The MDF tracks the contents of the eL1D.
It is a metadata-only array that maintains the tags and coherence
state of data in the eL1D, but does not track the data itself.
(The MDF tracks coherence state for the entire tile, which may
diverge from the state in the eL1D, as in Fig. 4.)

2Sec. III-B3 discusses how to improve performance with minor changes to
the LLC protocol.

L2 Cache Structure

State 
Function

Tag

Data

State

V StateTag Data
V StateTag Data

V StateTag Data

…

Traditional L2 Cache

V StateTag
V StateTag

V StateTag

…

MDF Directory

2048
entries

128
entries

Fig. 5: Microarchitecture diagram of L2 cache. The L2 de-
termines coherence actions by concurrently checking the L2
directory and MDF.

Fig. 5 shows the detailed microarchitecture of the L2 in
Kobold. Ignoring the MDF, the operation of the main L2 tag
and data arrays is unchanged from a baseline, inclusive, unified
L2 cache in a traditional CPU cache hierarchy: e.g., data is
inserted into the L2 tag and data arrays upon a L1D miss (i.e.,
from a CPU request). However, to ensure coherence between
the L2 and eL1D, the MDF is accessed in parallel with the main
L2 tag array to determine the appropriate coherence action.
Using the MDF to track the eL1D tags in the L2 enables
Kobold to perform snooping-like logic on-demand with no
performance overhead (the MDF is much smaller than the
L2 tags and lower latency). If a line is cached in the eL1D,
metadata for the line will be tracked in both the eL1D tags
and MDF, and the state in the MDF will determine whether a
memory transaction can be handled locally within the tile or
if the LLC must be contacted to, e.g., upgrade permissions.

Avoiding L2 pollution: Finally, the MDF is key to enabling
coherence for cache-attached accelerators without disrupting
core performance. Prior work has demonstrated that, with a
conventional inclusive cache hierarchy, cache-attached acceler-
ators can cause severe cache pollution by streaming data into
the L2 that evicts the core’s working set, slowing down cores
by >4× [46]. The MDF achieves a similar objective without
modifying the L2 replacement policy or inserting data into the
L2 at all: Kobold tracks the eL1D contents in the MDF and
never inserts data into the L2 unless it is accessed directly by a
core. When data is evicted from the eL1D, it is simultaneously
evicted from the MDF, and the L2 contents are unaffected
(though permissions may be upgraded, depending on the state
in the MDF; see Fig. 8 below). Kobold thus eliminates L2
pollution by design.

B. Cache Coherence Protocols

Kobold’s coherence protocols for the eL1D and L2 are de-
signed for the unique structure of a cache-attached accelerator’s
hierarchy. Fig. 6 and Fig. 7 highlight the differences between
the finite state machines of the baseline MESI protocol and
the Kobold protocol. We omit the L2 finite state machine due
to its size.

4



M

E

S

I

BusWr

BusWr

BusWr 

BusRd 

BusRd 

BusRd 

PrRd

PrRd
PrRd 

PrRd

PrWr 

PrWr

PrWr 

PrWr

PrRd

Fig. 6: Finite state machine of baseline MESI coherence protocol.

The Kobold protocol introduces peer-to-peer communication
between the eL1D and L2 that allow the caches to maintain
coherence between themselves and coordinate responses to LLC
requests. Peer-to-peer communication allows the tile caches to
transfer or share data between themselves.

For example, FWD_L2_GETX messages in Fig. 7 are sent
from the L2 to the eL1D when the L2 requests exclusive
access to data in the eL1D. The eL1D responds with data and
changes its coherence state if necessary. Furthermore, peer-to-
peer communication allows the tile caches to transfer ownership.
For example, UpgradeM messages in Fig. 7 are sent from the
L2 to the eL1D when the L2 evicts data that both caches
share but is tracked as modified by the MDF. This eliminates
redundant coherence traffic to the LLC by allowing the L2
and eL1D to change states while the overall tile state remains
unchanged from the LLC’s perspective.

1) Handling LLC requests: Requests from the LLC (i.e.,
downgrades or invalidations) to the tile are broadcast to both
the eL1D and L2 caches. We ensure that only one of the caches,
usually the L2, responds to LLC coherence requests. To enable
this, the L2 protocol utilizes the MDF to determine when it
must wait for the eL1D to complete an LLC request before
responding to the LLC. Upon completing the LLC request, the
eL1D sends an acknowledgement to the L2 cache. Following
this acknowledgement, the L2 cache can respond to the LLC
if needed.

In transactions requiring a data response or writeback, the
L2 cache services requests when it can. However, when the
eL1D holds the only copy of data, the eL1D will respond. To
ensure there is only one cache writing back at a time, the L2
cache prompts the eL1D to issue the response itself.

2) Handling core requests: Each time a core-issued request
reaches the L2, the L2 and MDF are searched in parallel. The
L2 cache controller uses both results to determine how to
proceed (see Fig. 5).

If the L2 cannot service the request but the MDF holds the
line with the requested permissions, the request is forwarded to
the eL1D cache which supplies the data. The eL1D responds
to the request and downgrades its state if necessary. Upon

M

E

S

I

BusWr

BusWr

BusWr 

BusRd 

BusRd 

BusRd 

PrRd

PrRd 

PrRd

PrWr 

PrWr

PrWr 

PrWr

FWD_L2_GETS 

FWD_L2_GETS 

FWD_L2_GETS

FWD_L2_GETX 

FWD_L2_GETX 
FWD_L2_GETX

UpgradeM

UpgradeM

PrRd 

PrRd

Fig. 7: Finite state machine of Kobold eL1D cache controller.
Additional intra-tile messages (red arrows) are necessary to allow
the eL1D and L2 to maintain coherence between themselves.

receiving a response from the eL1D, the L2 updates its local
state as well as the MDF to reflect any changes to the eL1D.

As demonstrated in Fig. 4, in the case that the line is not
found in the L2 and the MDF holds the line with higher
permissions (M or E) than what is requested (S), the request is
satisfied in a similar manner. However, during the transaction
the eL1D downgrades, leaving both the eL1D and L2 in the
same state (S) while the MDF maintains its original state. The
state of the MDF now reflects the overall state of the tile (M),
rather than the state of the eL1D. This mechanism avoids any
involvement of the LLC when a core and its local engine access
the same data.

If the line is found in the MDF but the request requires higher
permissions (e.g., MDF holds the line in shared state but the
request requires it in modified state), concurrent requests are
sent to the eL1D and the LLC. The eL1D supplies the data to
the L2 and transfers its permissions to the L2. An LLC request
is sent in parallel to obtain the permissions required to satisfy
the initial request. After receiving an acknowledgement from
the LLC, the L2 finally upgrades to the required permission
level and can satisfy the request.

If the line is not found in the L2 or MDF, the request is
sent directly to the LLC. Using the MDF to determine that the
eL1D does not have the data ensures the L2 does not send an
unnecessary request to the eL1D. Rather, the L2 immediately
sends a request for the data to the LLC, ensuring the critical
path is the same as an L2 miss in a baseline CMP.

3) Handling engine requests: When an engine-issued request
misses in the eL1D, the request is first forwarded to the L2
cache. In the case that the L2 cache can service the request
fully, data is transferred, the L2 is downgraded if necessary,
and the MDF state is updated to reflect the new eL1D state
(see steps 2-7 in Fig. 8).

If the L2 holds the block in a higher state than requested,
the L2 downgrades and sets the MDF to its original state. The
L2 and eL1D caches share the data but the MDF and LLC
track the data as exclusive.

If the L2 cannot service the request, it informs the eL1D

5



core

L1D

L2

5) ACK4) INV

6) Data

L3

engine

eL1D
MDF

2) Store
1) PUTS 
3) GETX 
8) PUTX 

7) Data

8) PUTX

Step L1D eL1D MDF L2 L3

Init) S S M S M

1) S I I M M

2) S I I M M

3) S I I M M

4) I I I M M

5) I I M I M

6) I M M I M

7) I M M I M

8) I I I I M

Fig. 8: Continuation of the example from Fig. 4 where the data
is evicted from the eL1D (step 1), stored by the engine (steps
2-7), and finally evicted from the eL1D again (step 8).

and the eL1D sends the request to the LLC. When the LLC
responds, a state change is sent to the L2 cache to update the
state of the MDF before the eL1D completes the request.
Optional Optimization – eL1D Speculative Loads: So far,
Kobold adds L2 latency to the critical path of eL1D misses.
This is to prevent requests arriving at the LLC directory while
the L2 already has a valid copy of the data. However, for
applications in which engines and cores share little data (a
common case), the additional L2 latency on every eL1D miss
can severely harm performance.

Instead, the eL1D can speculatively forward a request to the
LLC in parallel with the L2 request to hide the L2 latency. In
some coherence protocols, the LLC assumes that a tile will
not request data if the LLC thinks the tile already has the data.
Thus, if the eL1D forwards a speculative request to the LLC
when the L2 already has the data, this can result in unexpected
behavior at the LLC.

Protocols with silent drops allow the LLC to receive a request
for data that it thinks the requester already has. In such designs,
private caches drop clean data on eviction without notifying
the LLC, so the LLC doesn’t know whether a tile really has
the data. These protocols allow the LLC to gracefully handle
speculative eL1D requests if the data is clean in the L2.

However, if the data is dirty in the L2, the tile cannot have
silently dropped it, since dirty data must be written back to
the LLC on eviction. Kobold thus modifies the LLC protocol
to ignore redundant requests to data already shared by the
requesting tile, assuming that the L2 on that tile will handle
the request.

4) Handling evictions: When the L2 replaces a block, it
first checks the state in the L2 directory and the MDF. If only
the L2 cache holds the line, the L2 issues a PUT request to
the LLC. However, if the MDF also holds the tag (i.e., the
eL1D has the data), the L2 silently drops the data. If the MDF
tracks the data in an exclusive state while the L2 holds the
data in shared, the eL1D state is upgraded to that of the MDF
and the L2 drops its copy.

If the eL1D replaces a block in a private state, it concurrently
issues a PUT request to the LLC and informs the MDF that
it replaced the line (see step 8 in Fig. 8). However, when the
eL1D replaces a block in the shared state, more indirection
is required. First, the eL1D checks if the L2 cache holds the

line. If the L2 does not hold the data, the MDF is invalidated
and the L2 triggers the eL1D to issue PUT request to the LLC.
However, if the L2 holds the data, the eL1D silently drops
the data, the MDF is invalidated, and the L2 is upgraded to
reflect the previous state of the MDF if necessary (see step 1
in Fig. 8).

IV. EVALUATION

Verification: We used the Murphi model checker [15] to
formally verify Kobold’s stable-state protocols. We made the
model transaction-atomic based on the methodology described
in [36]. Our Murphi model verified Kobold’s protocols against
the single-writer, multiple-reader invariant and proved deadlock-
freedom. During verification, Murphi explored a total of 12,534
states.
Area: We used Cacti 7 to evaluate the area requirements of
the MDF [6]. We base our evaluation on parameters used in
täkō [46]. We evaluate a system with a 128KB L2, 8KB eL1D,
and 512KB LLC per tile. In 22nm, Cacti estimates the L2 size
as 0.2706mm2, the LLC bank as 0.5963mm2, and the MDF
size as 0.00076mm2. Compared against the baseline area of
the L2 cache and LLC bank, the MDF adds an area overhead
of only 0.09%.

V. CONCLUSION & FUTURE WORK

In this era of memory-hierarchy specialization and heteroge-
neous architectures, ease of integration is vital for incorporating
specialized hardware like cache-attached accelerators. Even
in homogenous systems, cache coherence is a challenging
mechanism to correctly implement and verify. To integrate
cache-attached accelerators with minimal impact on coherence
complexity and system overhead, we introduced the Kobold
coherent protocol. By keeping additional coherence actions
local to a single CMP tile, Kobold significantly simplifies
accelerator integration, minimizes on-chip network traffic, and
avoids impacting baseline processor performance.

Moving forward, we plan to generate the fully concurrent
protocols, i.e. the transient states and transitions required for
concurrency. We plan to use the HieraGen tool [38] which
generates fully concurrent protocols for hierarchical cache
systems based on input of correct stable state protocols for
each level of the cache hierarchy.

REFERENCES

[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in Proc. of the 23rd IEEE intl. symp. on
High Performance Computer Architecture (Proc. HPCA-23), 2017.

[2] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: a low-
overhead, locality-aware processing-in-memory architecture,” in Proc. of
the 42nd annual Intl. Symp. on Computer Architecture (Proc. ISCA-42),
2015.

[3] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in memory
using 3d-stacked dram,” in ACM SIGARCH Computer Architecture News,
vol. 43, no. 3. ACM, 2015, pp. 131–143.

[4] J. Alsop, M. Sinclair, and S. Adve, “Spandex: A flexible interface for
efficient heterogeneous coherence,” in Proc. of the 45th annual Intl. Symp.
on Computer Architecture (Proc. ISCA-45), 2018.

[5] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-data processing: Insights from a micro-46
workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, 2014.

6



[6] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “Cacti 7: New tools for interconnect exploration in innovative
off-chip memories,” ACM Trans. Archit. Code Optim., 2017.

[7] B. Black, “Die Stacking is Happening!” in MICRO-46 Keynote, 2013.
[8] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur,

D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, “Google
workloads for consumer devices: Mitigating data movement bottlenecks,”
in Proc. of the 23rd intl. conf. on Architectural Support for Programming
Languages and Operating Systems (Proc. ASPLOS-XXIII), 2018.

[9] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarung-
nirun, K. Hsieh, N. Hajinazar, K. T. Malladi, H. Zheng, and O. Mutlu,
“Conda: Efficient cache coherence support for near-data accelerators,” in
Proc. of the 46th annual Intl. Symp. on Computer Architecture (Proc.
ISCA-46), 2019.

[10] X. Chen, Y. Yang, M. Delisi, G. Gopalakrishnan, and C.-T. Chou,
“Hierarchical cache coherence protocol verification one level at a time
through assume guarantee,” in 2007 IEEE International High Level
Design Validation and Test Workshop, 2007.

[11] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in Proc. of the 43rd annual
Intl. Symp. on Computer Architecture (Proc. ISCA-43), 2016.

[12] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, H. Huang, and G. Reinman,
“Composable accelerator-rich microprocessor enhanced for adaptivity and
longevity,” in International Symposium on Low Power Electronics and
Design (ISLPED), 2013.

[13] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Charm: A composable heterogeneous accelerator-rich microprocessor,”
in Proceedings of the 2012 ACM/IEEE International Symposium on Low
Power Electronics and Design, 2012.

[14] W. J. Dally, “GPU Computing: To Exascale and Beyond,” in Supercom-
puting ’10, Plenary Talk, 2010.

[15] D. Dill, A. Drexler, A. Hu, and C. Yang, “Protocol verification as a
hardware design aid,” in Proceedings 1992 IEEE International Conference
on Computer Design: VLSI in Computers & Processors, 1992.

[16] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in Proc. of the 24th Intl. Conf.
on Parallel Architectures and Compilation Techniques (Proc. PACT-24),
2015.

[17] M. Gao and C. Kozyrakis, “HRL: Efficient and flexible reconfigurable
logic for near-data processing,” in Proc. of the 22nd IEEE intl. symp. on
High Performance Computer Architecture (Proc. HPCA-22), 2016.

[18] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The
Terasys massively parallel PIM array,” Computer, vol. 28, no. 4, 1995.

[19] J. Hennessy and D. Patterson, “A new golden age for computer architec-
ture: Domain-specific hardware/software co-design, enhanced security,
open instruction sets, and agile chip development,” in Turing Award
Lecture, 2018.

[20] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in ISSCC, 2014.

[21] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijayku-
mar, O. Mutlu, and S. W. Keckler, “Transparent Offloading and Mapping
(TOM): Enabling Programmer-Transparent Near-Data Processing in
GPU Systems,” in Proc. of the 43rd annual Intl. Symp. on Computer
Architecture (Proc. ISCA-43), 2016.

[22] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, ,
and J. Torrellas, “FlexRAM: Towards an intelligent memory system,” in
Proc. of the 17th Intl. Conf. on Computer Design (Proc. ICCD), 1999.

[23] P. M. Kogge, “EXECUBE-A new architecture for scaleable MPPs,” in
Proc. of the intl conf. on Parallel Processing (ICPP), 1994.

[24] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic,
N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas,
N. Treuhaft, and K. Yelick, “Scalable processors in the billion-transistor
era: IRAM,” Computer, vol. 30, no. 9, 1997.

[25] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.
Lampson, D. Sanchez, and T. B. Schardl, “There’s plenty of room at the
top: What will drive computer performance after moore’s law?” Science,
vol. 368, no. 6495, 2020.

[26] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, “The
directory-based cache coherence protocol for the dash multiprocessor,”
1990.

[27] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A processing-
in-memory architecture for bulk bitwise operations in emerging non-

volatile memories,” in Proceedings of the 53rd Annual Design Automation
Conference. ACM, 2016, p. 173.

[28] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch, “Thin
servers with smart pipes: Designing soc accelerators for memcached,” in
Proceedings of the 40th Annual International Symposium on Computer
Architecture, ser. ISCA ’13, 2013.

[29] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sanchez, and N. Beckmann, “Livia: Data-centric computing throughout
the memory hierarchy,” in Proc. of the 25th intl. conf. on Architectural
Support for Programming Languages and Operating Systems (Proc.
ASPLOS-XXV), 2020.

[30] S. Ma, L. Huang, Y. Lei, Y. Guo, and Z. Wang, “An efficient direct
memory access (dma) controller for scientific computing accelerators,”
in 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
2019.

[31] Y.-C. Maa, D. K. Pradhan, and D. Thiebaut, “Two economical directory
schemes for large-scale cache coherent multiprocessors,” SIGARCH
Comput. Archit. News, 1991.

[32] M. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache coherence
is here to stay,” Commun. ACM, 2012.

[33] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze,
and M. Oskin, “Snnap: Approximate computing on programmable socs
via neural acceleration,” in 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), 2015.

[34] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on
memory consistency and cache coherence, 2020.

[35] M. D. Noakes, D. A. Wallach, and W. J. Dally, “The J-machine
multicomputer: an architectural evaluation,” in Proc. of the 20th annual
Intl. Symp. on Computer Architecture, 1993.

[36] T. Olausson, “Towards the automatic synthesis of cache coherence
protocols,” Ph.D. dissertation, 2020.

[37] M. Oskin, F. Chong, and T. Sherwood, “Active pages: A model of
computation for intelligent memory,” in Proc. of the 25th annual Intl.
Symp. on Computer Architecture (Proc. ISCA-25), 1998.

[38] N. Oswald, V. Nagarajan, and D. J. Sorin, “Hieragen: Automated
generation of concurrent, hierarchical cache coherence protocols,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020.

[39] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent ram,”
IEEE micro, vol. 17, no. 2, pp. 34–44, 1997.

[40] A. Pattnaik, X. Tang, O. Kayiran, A. Jog, A. Mishra, M. T. Kandemir,
A. Sivasubramaniam, and C. R. Das, “Opportunistic computing in gpu
architectures,” in Proc. of the 46th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-46), 2019.

[41] F. Pong and M. Dubois, “Verification techniques for cache coherence
protocols,” ACM Comput. Surv., 1997.

[42] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, and V. Srinivasan,
“NDC: Analyzing the Impact of 3D-Stacked Memory + Logic Devices on
MapReduce Workloads,” in Proc. of the IEEE Intl. Symp. on Performance
Analysis of Systems and Software (ISPASS), 2014.

[43] M. Qureshi, A. Jaleel, Y. Patt, S. Steely, and J. Emer, “Adaptive insertion
policies for high performance caching,” in Proc. of the 34th annual Intl.
Symp. on Computer Architecture (Proc. ISCA-34), 2007.

[44] A. Ros, M. Davari, and S. Kaxiras, “Hierarchical private/shared classi-
fication: The key to simple and efficient coherence for clustered cache
hierarchies,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), 2015.

[45] N. Sakharnykh, “Beyond gpu memory limits with unified
memory on pascal,” https://developer.nvidia.com/blog/
beyond-gpu-memory-limits-unified-memory-pascal/, 2016.

[46] B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann, “täkō:
A polymorphic cache hierarchy for general-purpose optimization of
data movement,” in Proc. of the 49th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-49), 2022.

[47] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional neural
network accelerator with in-situ analog arithmetic in crossbars,” in Proc.
of the 43rd annual Intl. Symp. on Computer Architecture (Proc. ISCA-43),
2016.

[48] Y. S. Shao and D. Brooks, Research infrastructures for hardware
accelerators, 2016.

7

https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/


[49] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” in Proc. of the 24th IEEE intl. symp. on
High Performance Computer Architecture (Proc. HPCA-24), 2018.

[50] A. Subramaniyan, J. Wang, E. R. Balasubramanian, D. Blaauw,
D. Sylvester, and R. Das, “Cache automaton,” in Proc. of the 50th
annual IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-50),
2017.

[51] P.-A. Tsai, C. Chen, and D. Sanchez, “Adaptive Scheduling for Systems
with Asymmetric Memory Hierarchies,” in Proc. of the 51st annual
IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-51), 2018.

[52] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: Reducing
the energy of mature computations,” in Proceedings of the Fifteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XV, 2010.

[53] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B.
Taylor, and S. Swanson, “QsCores: Trading dark silicon for scalable
energy efficiency with quasi-specific cores,” in Proc. of the 44th annual

IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-44), 2011.
[54] Z. Wang, J. Weng, J. Lowe-Power, J. Gaur, and T. Nowatzki, “Stream

floating: Enabling proactive and decentralized cache optimizations,” in
Proc. of the 27th IEEE intl. symp. on High Performance Computer
Architecture (Proc. HPCA-27), 2021.

[55] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “Top-pim: Throughput-oriented programmable processing
in memory,” in Proc. HPDC, 2014.

[56] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in Proc. of the 24th IEEE intl.
symp. on High Performance Computer Architecture (Proc. HPCA-24),
2018.

[57] L. Zhao, R. Iyer, S. Makineni, D. Newell, and L. Cheng, “Ncid: A
non-inclusive cache, inclusive directory architecture for flexible and
efficient cache hierarchies,” in Proceedings of the 7th ACM International
Conference on Computing Frontiers, 2010.

8


