
Kobold: Simplified Cache Coherence 
for Cache-Attached Accelerators

Jennifer Brana, Brian C. Schwedock, Yatin A. Manerkar, Nathan Beckmann

WDDSA 2022
Session 1: What are the potential accelerators?



Executive Summary

● Discrete accelerators suffer from high communication costs with the cores

● Cache-attached accelerators perform ops where data exists and benefit 

from simple communication

● Problem: significant complexity required for coherent access to memory

● Kobold coherence protocol simplifies system integration for cache-attached 

accelerators without degrading performance

● Kobold adds an area overhead of only 0.09% 

2



Outline

● Summary

● Motivation

● Design

● Performance Considerations

● Evaluation

3



Data movement costs keep getting worse

4

50 yearsLoads & 
stores

Core

Memory

LLC slice

Core & L1
L2

M
em

or
y

M
em

or
y



Near-data Computing to Reduce Data Movement
Prime [P. Chi, ISCA 2016]

Pinatubo [S. Li, DAC 2016]

Isaac [A. Shafiee, ISCA 2016]

Grapher [L. Song, HPCA 2018]

Terasys [Gokhale, Computer 1995]

FlexRAM [Kang, ICCD 1999] 

EXECUBE [Kogge, ICPP 1994]

PIM Enabled Instructions [Ahn, ISCA 2015]

...

Accel.

Accel.

Accel.

5

Accel.



Cache-attached Accelerators

Shared 
Cache

Memory

Private 
Cache

Core

Accelerator

6

• täkō [Schwedock, ISCA 2022]

• Compute Caches [S. Aga, HPCA 2017]

• Livia [Lockerman, ASPLOS 2020]

• LLC-Compute [Pattnaik, ISCA 2019]

• Cache Automaton [Subramaniyan, MICRO 2017]

• Stream Floating [Z. Wang, HPCA 2021]

Accel. Cache



Cache-attached Accelerators
● Offload key computations.
● Simple fine-grained communication with 

processor.
● Eases the effort to use accelerators. 
● … but to benefit, must maintain coherence 

with the rest of the system. 

Kobold is a new coherence protocol to simplify 
the integration of cache-attached accelerators.

Shared 
Cache

Memory

Private 
Cache

Core

Accelerator

7

Accel. Cache



Example System: täkō

Ca
llb

ac
k 

Bu
ffe

r

Dataflow Fabric

eL1d rTLBTLB

Hardware 
SchedulerCore

Data Array

Ta
g 

Ar
ra

y

L2 Engine

L1d L1i

L3 Cache Bank

Tile

8[Schwedock, ISCA’22]



Alternative Designs

9



L3

Core

L1D

L2

engine

eL1D

Core

L1D

L2

engine

eL1D

Core

L1D

L2

engine

eL1D

Core

L1D

L2

engine

eL1D

Naïve Coherence for Cache-attached Accelerators

● Naïve system treats eL1D as 
additional LLC sharer

● eL1D uses same protocol as L2

● Results in excessive 
communication through LLC 

10
Co

de

Data



engine

eL1D

engine

eL1D

Naïve Coherence for Cache-attached Accelerators

● Naïve system treats eL1D as 
additional LLC sharer

● eL1D uses same protocol as L2

● Results in excessive 
communication through LLC 

INV2

PUTX3

data4

11

Core & L1
L2 eL1D

LLC

GETS1



Hierarchical Cache Coherence

12

private cache

CPU

private cache

CPU

private cache

CPU

private cache

CPU

directory / shared cachedirectory / shared cache

directory / shared cache



Prior Heterogenous Protocols
● Spandex [J. Alsop, ISCA 2018]

● CoNDA [A. Boroumand, ISCA 2019]

● Direct Memory Access (DMA) [S. Ma, ISCAS 2019]

● Mixed-proxy extensions [Lustig, ISCA 2022]

13

Shared 
Cache

Memory

Private 
Cache

Core

Accelerator

Designed for:

• coarse-grain sharing

• systems integrating very different protocols

• caches with very different cache semantics



Kobold Design

14



Cache Hierarchy Organization

● Goal: reduce unnecessary 
communication with the LLC

● Kobold attaches the accelerator 
to the L2 cache

● Requires new coherence protocol

Core

L1D

L2

Core

L1D

L2

engine

eL1D

Core

L1D

L2

engine

eL1D

Core

L1D

L2

L3

15
Co

de

Data

engine

eL1D

engine

eL1D



Cache Hierarchy Organization

● Goal: reduce unnecessary 
communication with the LLC

● Kobold attaches the accelerator 
to the L2 cache

● Requires new coherence protocol

engine

eL1D

GETS1

Data2

16



Verification Complexity

● Goal: restrict complexity of 
accelerator to within a tile

● LLC protocol remains unchanged

17

FRUH

/�'

/�

HQJLQH

H/�'

/�



Kobold Cache Hierarchy
● Kobold is a type of hierarchical 

coherence.

● L2 is non-inclusive of the eL1D

● Logically eL1D & L2 form a hierarchy 
but operate as peers via snooping

● Mis-direction Filter (MDF) tracks the 
contents of the eL1D cache

18

FRUH

/�'

/�

HQJLQH

H/�'

/�

MDF



Cache Microarchitecture

19

L2 Cache

State 
Function

Tag

Data

State

V StateTag Data
V StateTag Data

V StateTag Data
…

eL1D Cache

128
entries

V StateTag Data
V StateTag Data

V StateTag Data

…

Traditional L2 Directory

V StateTag
V StateTag

V StateTag

…

MDF Directory

2048
entries

128
entries



Kobold’s intra-tile locality enables:

1. Tile caches to transfer ownership w/o sending requests to the 
LLC.

20



Example – core write

21

1) write

2) GETX
3) FWD 
GETX

4) Data

5) Data

FRUH

/�'

/�

/�

HQJLQH

H/�'
0')

6) Data

Step L1D eL1d MDF L2 L3

Init) I M M I M

1) I M M I M

2) I M M I M

3) I I M I M

4) I I I M M

5) M I I M M

6) M I I M M

M

Co
de

M M



Kobold’s Intra-tile locality enables:

1. Tile caches to transfer ownership w/o sending requests to the 
LLC.

2. All tile caches to share data that is tracked as exclusive in the 
LLC directory.

22



Example – core read

23

1) read

2) GETS
3) FWD 
GETS

4) Data

5) Data

FRUH

/�'

/�

/�

HQJLQH

H/�'
0')

6) Data

Step L1D eL1d MDF L2 L3

Init) I M M I M

1) I M M I M

2) I M M I M

3) I S M I M

4) I S M S M

5) S S M S M

6) S S M S M

Co
de

SSMS M



Kobold’s Intra-tile locality enables:

1. Tile caches to transfer ownership w/o sending requests to the 
LLC.

2. All tile caches to share data that is tracked as exclusive in the LLC 
directory.

3. Tile caches to coordinate responses to LLC requests. 

*see paper for more details

24



Kobold’s Intra-tile locality enables:

1. Tile caches to transfer ownership w/o sending requests to the 
LLC

2. All tile caches to share data that is tracked as exclusive in the LLC 
directory

3. Tile caches to coordinate responses to LLC requests

25

à Delay writebacks to the LLC

à Reduce coherence requests required

à Ensures a single responder to requests



Performance Considerations

● Problem: Cache-attached 
accelerators can pollute the L2 
cache.
o Solution: L2 cache is non-

inclusive of eL1D
● Problem: Kobold adds L2 latency 

to eL1D misses.
o Solution: w/ minor modification 

to LLC protocol, optionally allow 
eL1D speculative loads

*see paper for more details

26

FRUH

/�'

/�

/�

HQJLQH

H/�'
0')



Preliminary Results + Verification
We evaluate a system with a 128KB L2, 8KB eL1D, and 512KB LLC per tile. 

27

Component Area (𝒎𝒎𝟐)

L2 cache 0.2706 𝒎𝒎𝟐

LLC bank 0.5963 𝒎𝒎𝟐

MDF 0.00076 𝒎𝒎𝟐
Murphi output

Cacti results

Estimated area overhead to be 
0.09% of baseline area 

Verified stable state protocols using 
Murphi model checker



Future Work
● Generate concurrent protocols 

using HieraGen
● Implement and test in the täkō

system

28

FRUH

/�'

/�

/�

HQJLQH

H/�'
0')



Kobold: coherence for cache-attached accelerators

● Ease of integration is vital for 
cache-attached accelerators

● Kobold restricts the complexity 
of accelerator integration to 
within a tile

● Kobold minimizes on-chip 
network traffic and preserves 
the baseline processor 
performance

FRUH

/�'

/�

/�

HQJLQH

H/�'
0')

29


