
Kobold: Simplified Cache Coherence for
Cache-Attached Accelerators

Jennifer Brana (University of Portland), Brian Schwedock (CMU), Yatin Manerkar (University of Michigan), Nathan Beckmann (CMU)

Motivation

Rising cost of
data movement

Move compute to
where data resides

Cache-attached accelerators move
accelerators to within the cache hierarchy

täkō [1] (above) is a representative
system that augments each tile of a CMP
with an engine and engine cache. This
allows the engine to:
1. Accelerate key computations
2. Use low-latency & fine-grained

communication with the processor

To fully benefit, the engine’s cache must
maintain coherence with the system

Core & L1

LLC slice
L2 engine

PUTX3GETX1

INV2

Data4

Naïve Design

Core

L1D

L2

engine

eL1D

LLC

Treat eL1d as additional
LLC sharer
eL1D uses baseline
protocol
Results in excessive
writebacks to the LLC

Core and engine
must transfer data
through the LLC

LLC banks are
often far from cores

à
wasteful &

unnecessary data
movement

Kobold Design

Core

L1D

L2

engine

eL1D

LLC

Goal 1: reduce
writebacks to the LLC
Attach the eL1D to the
L2 cache

Core & L1

LLC slice
L2 engineGETX1

Data2

Now, the core and
engine can transfer
data w/o writing
back to the LLC

Insight: restricting the complexity of the
accelerator to within a tile allows the LLC
protocol to remain unchanged

Challenge: Verification of new coherence
protocols can be extremely costly

Goal 2: restrict
complexity of
engine to
within a tile

Add directory to L2: Mis-direction
Filter (MDF) tracks the state of the eL1D
Intra-tile coherence is maintained using
MDF & new intra-tile communication

Intra-tile locality enables fast, local
communication

Coherence Protocols

1) load

2) GETX
3) FWD
GETX

4) Data

5) Data

6) Data

Step L1D eL1d L2 /
MDF

L3

Init) I M I / M M

1) I M I / M M

2) I M I / M M

3) I I I / M M

4) I I M / I M

5) M I M / I M

6) M I M / I M

1) Tile caches can transfer ownership without
sending requests to the LLC

1) read

2) GETS
3) FWD
GETS

4) Data

5) Data

6) Data

Step L1D eL1d L2 /
MDF

L3

Init) I M I/M M

1) I M I/M M

2) I M I/M M

3) I S I/M M

4) I S S/M M

5) S S S/M M

6) S S S/M M

2) All tile caches can share data that is
tracked as exclusive in the LLC directory

1) INV

2) INV

2) INV MDF

3) ACK

3) ACK

4) PUTX

Step L1D eL1
d

L2 /
MDF L3

Init) S S S/M M

1) S S S/M M

2) I I M/I M

3) I I M/I M

4) I I I/I M

5) I I I/I I

3) Caches coordinate responses to LLC
requests so there is only one responder

Kobold is not traditional hierarchal cache
coherence (HCC)

Typical HCC adds inclusive intermediate caches to
maintain cluster coherence, adding hierarchical

indirection and increasing storage overhead
To avoid this, Kobold implements intra-tile coherence

using the MDF and intra-tile communication, allowing
the eL1D and L2 to maintain coherence between
themselves and preserve baseline performance

Performance Considerations
Goal 3:
prevent L2
cache
pollution.

L2 cache is non-
inclusive of the
eL1D.

Optional eL1D optimization: with a
minor modification to the LLC protocol,
we allow speculative eL1D loads

Evaluation
We evaluate a system with a 128KB L2, 8KB
eL1D, and 512KB LLC per tile
Estimated MDF overhead of only 0.09%
of baseline (L2+LLC) area using CACTI
Verified stable state protocols using the
Murphi model checker

Next Steps
Generate fully concurrent protocols using
the HieraGen toolset
Implement and test in the täkō system

Stable state protocol for eL1D cache controller. Red arrows
represent new intra-tile messages.

Requires new
coherence protocol

MICRO 2022
Undergraduate SRC

References
[1] täkō: A Polymorphic Cache Hierarchy for General-Purpose
Optimization of Data Movement. B. Schwedock, et al. ISCA 2022.

Ca
llb

ac
k

Bu
ffe

r

Dataflow Fabric

eL1d rTLBTLB

Hardware
Scheduler

Tile
Core

Data Array

Ta
g

Ar
ra

y

L2 Engine

L1d L1i

L3 Cache Bank

