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Motivation

Rising cost of 
data movement

Move compute to 
where data resides

Cache-attached accelerators move 
accelerators to within the cache hierarchy

täkō [1] (above) is a representative 
system that augments each tile of a CMP 
with an engine and engine cache. This 
allows the engine to:
1. Accelerate key computations
2. Use low-latency & fine-grained 

communication with the processor

To fully benefit, the engine’s cache must 
maintain coherence with the system
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Treat eL1d as additional 
LLC sharer
eL1D uses baseline 
protocol
Results in excessive 
writebacks to the LLC

Core and engine 
must transfer data 
through the LLC

LLC banks are 
often far from cores

à
wasteful & 

unnecessary data 
movement

Kobold Design
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Goal 1: reduce 
writebacks to the LLC
Attach the eL1D to the 
L2 cache
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Now, the core and 
engine can transfer 
data w/o writing 
back to the LLC 

Insight: restricting the complexity of the 
accelerator to within a tile allows the LLC 
protocol to remain unchanged 

Challenge: Verification of new coherence 
protocols can be extremely costly

Goal 2: restrict 
complexity of 
engine to 
within a tile

Add directory to L2: Mis-direction 
Filter (MDF) tracks the state of the eL1D
Intra-tile coherence is maintained using 
MDF & new intra-tile communication

Intra-tile locality enables fast, local 
communication

Coherence Protocols
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1) Tile caches can transfer ownership without 
sending requests to the LLC
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2) All tile caches can share data that is 
tracked as exclusive in the LLC directory
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3) Caches coordinate responses to LLC 
requests so there is only one responder 

Kobold is not traditional hierarchal cache 
coherence (HCC)

Typical HCC adds inclusive intermediate caches to 
maintain cluster coherence, adding hierarchical 

indirection and increasing storage overhead
To avoid this, Kobold implements intra-tile coherence 

using the MDF and intra-tile communication, allowing 
the eL1D and L2 to maintain coherence between 
themselves and preserve baseline performance

Performance Considerations
Goal 3: 
prevent L2 
cache 
pollution. 

L2 cache is non-
inclusive of the 
eL1D. 

Optional eL1D optimization: with a 
minor modification to the LLC protocol, 
we allow speculative eL1D loads

Evaluation
We evaluate a system with a 128KB L2, 8KB 
eL1D, and 512KB LLC per tile 
Estimated MDF overhead of only 0.09% 
of  baseline (L2+LLC) area using CACTI
Verified stable state protocols using the 
Murphi model checker

Next Steps
Generate fully concurrent protocols using 
the HieraGen toolset
Implement and test in the täkō system

Stable state protocol for eL1D cache controller. Red arrows 
represent new intra-tile messages.

Requires new 
coherence protocol
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