6 Carnegie Mellon University Computer Science Department

Harmony: Co-Optimizing Parallelism and Locality to Bound Performance

Jennifer Brana (CMU)

Nathan Beckmann (CMU)

Carnegie Mellon University

Parallelism-Locality Tradeoff for Performance

2

Carnegie Mellon University

Exploiting parallelism can improve performance...

3

Carnegie Mellon University

As parallelism scales, data movement dominates

Carnegie Mellon University

Locality limits data movement but serializes compute

5

Carnegie Mellon University

To study the parallelism-locality tradeoff

- ... we propose the **Chaos** processor model to exploit parallelism and locality in a single framework
 - **Chaos** incorporate the dynamism of OoO scheduling to throttle parallelism
 - **Chaos** presents a spatial execution model to expose control of dataflow and instruction locality
 - Parallelism and locality in **Chaos** are controlled by online instruction scheduling methods
- ...we introduce *Harmony*, a placement capable of exploiting parallelism without sacrificing locality

Harmony: Achieving the best of both worlds

7

Carnegie Mellon University

6 Carnegie Mellon University Computer Science Department

Harmony: Co-Optimizing Parallelism and Locality to Bound Performance

Jennifer Brana (CMU)

Nathan Beckmann (CMU)

Carnegie Mellon University

